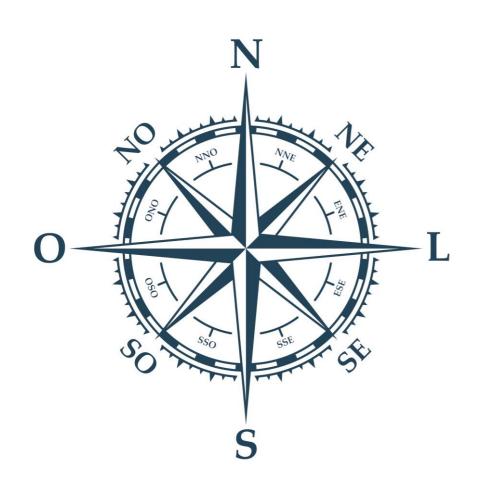


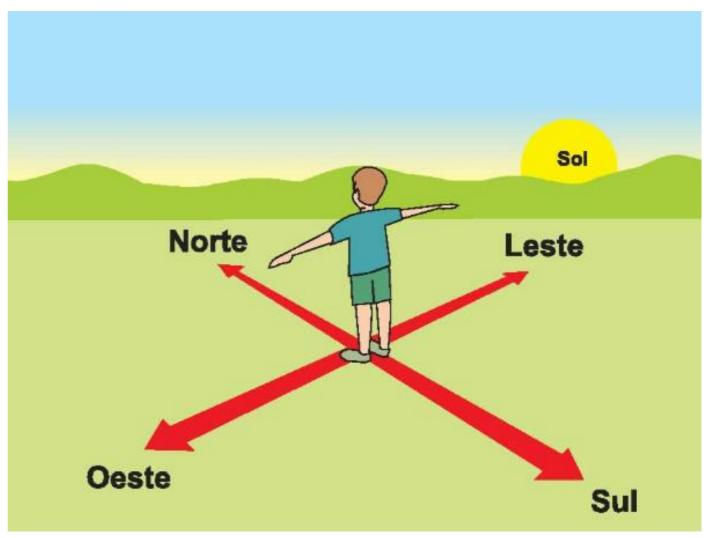
Estudo do campo magnético

2ª série Aula 2 – 3º bimestre

Eletromagnetismo.

- Analisar algumas características do vetor de indução magnética;
- Analisar as características da linha de indução magnética;
- Compreender o campo magnético terrestre;
- Construir uma bússola e analisar seu comportamento.


Para começar


Imagine que você está em uma floresta densa e precisa encontrar o caminho de volta para casa. Você não tem um mapa, nem um GPS, mas tem uma bússola. Como você poderia usá-la para encontrar a direção correta? Vire e converse com seus colegas sobre isso.

Pontos Cardeais

Atividade: montagem de uma bússola caseira.

Materiais necessários:

- 1 copo com água;
- 1 agulha de costura ou de máquina de costura;
- 1 ímã;
- Papel (sulfite, folha de caderno, jornal, etc.).

Procedimento:

I. Imantação da agulha:

- 1. Pegue a agulha e passe o ímã várias vezes ao longo do seu comprimento, sempre na mesma direção;
- 2. Verifique se a agulha está imantada o suficiente aproximando-a de um objeto metálico ferromagnético, como um clipe ou uma moeda, e observe se há atração ou repulsão.

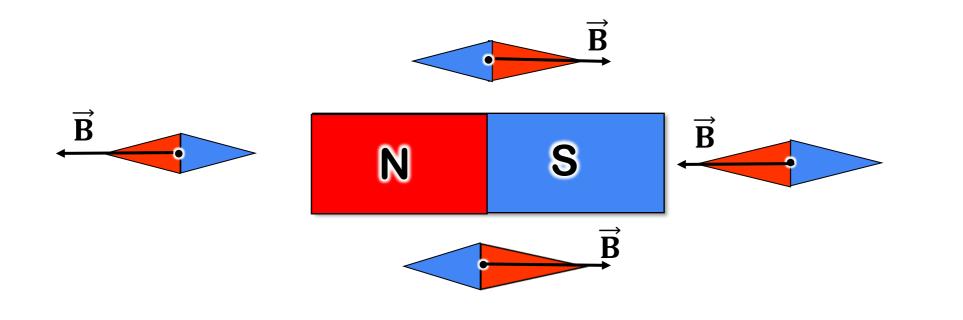
II - Montagem da bússola:

- 1. Corte um pedaço de papel quadrado, com aproximadamente 2,0 cm de lado, ou de acordo com o tamanho da agulha utilizada. Esse papel servirá para permitir que a agulha flutue sobre a água;
- 2. Atravesse ou cole a agulha na direção diagonal desse quadrado de papel.

III - Teste da bússola:

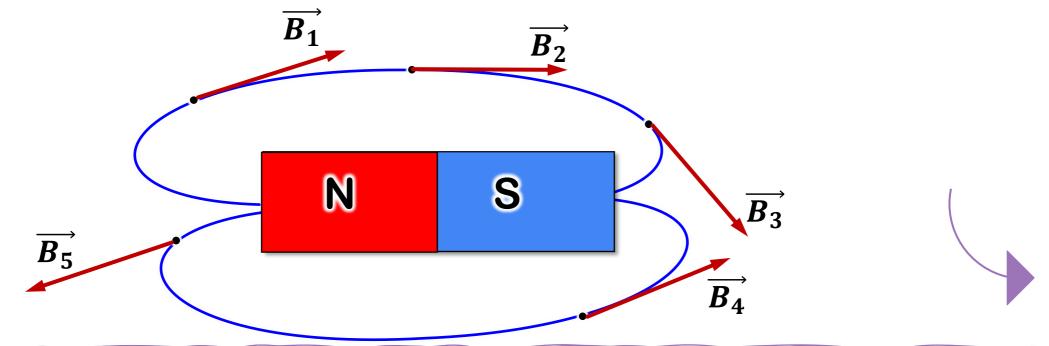
- 1. Coloque o pedaço de papel com a agulha em um copo cheio de água;
- 2. Verifique se a bússola está funcionando. Para isso, compare a direção para onde a agulha está apontando com alguma referência externa. Sem a presença de outros campos magnéticos por perto, a agulha deve se orientar na direção dos polos norte-sul magnéticos da Terra.

Campo magnético

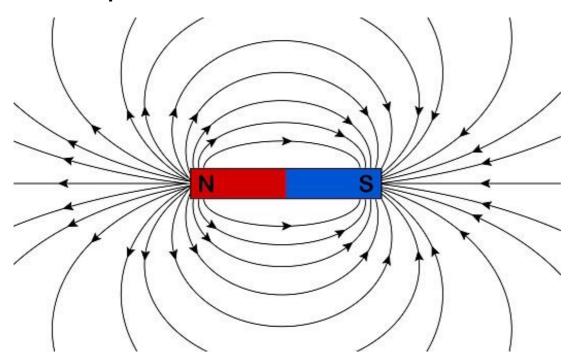

Em termos gerais, a ação do imã varia de ponto a ponto. Para quantificar essa ação, atribuímos a cada ponto do campo uma grandeza vetorial chamada vetor de indução magnética, ou simplesmente indução magnética, representado por \vec{B} .

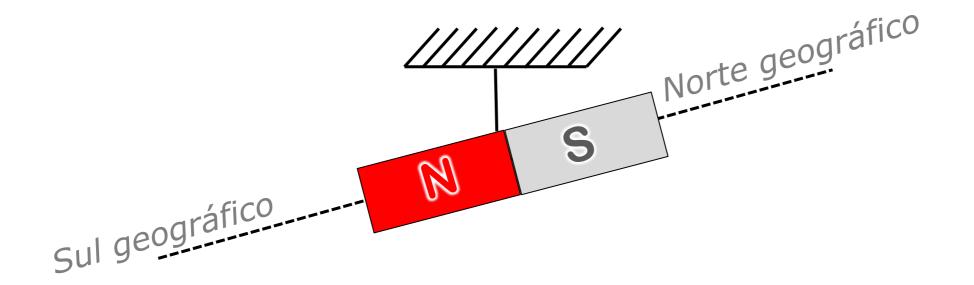
Para determinar a direção e o sentido do campo magnético em um ponto P, utilizamos uma agulha magnetizada posicionada nesse ponto. A direção do campo magnético é indicada pela orientação da agulha, e seu sentido é determinado pela direção para onde o polo norte da agulha aponta.

Vetor de indução magnética


Para exemplificar esse conceito, as imagens abaixo apresentam a representação do vetor de indução magnética em diferentes pontos do campo magnético gerado por um imã.

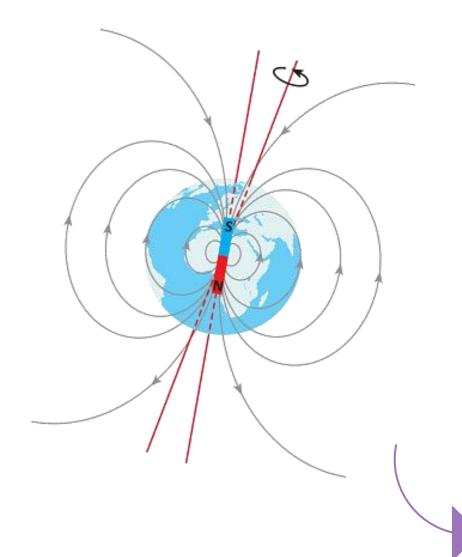
Foco no conteúdo


Ao posicionarmos fragmentos de ferro ao redor de um imã, podemos observar que eles se transformam em pequenas bússolas e se alinham, formando linhas específicas. Essas linhas são conhecidas como linhas de indução magnética. Em cada ponto, as linhas de indução são tangentes ao vetor \vec{B} , conforme ilustrado na figura abaixo.

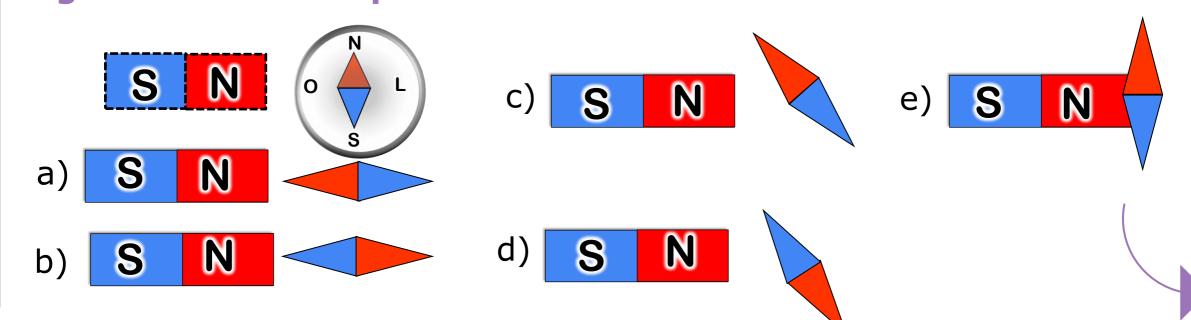

Sentido das linhas de indução

Na área externa ao imã, as linhas do campo magnético se direcionam do polo norte para o polo sul.

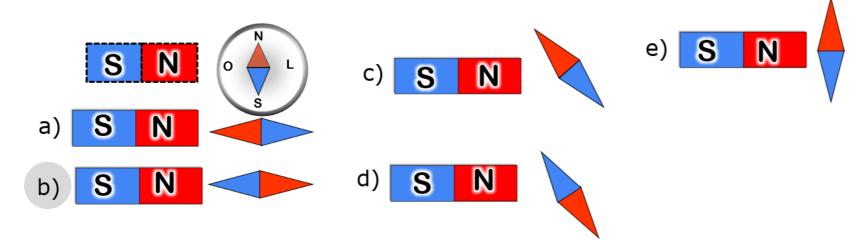
Ao suspender um imã pelo seu centro de gravidade, ele tende a se alinhar aproximadamente na direção norte-sul geográfica local. A extremidade do imã voltada para o norte geográfico é chamada de polo norte do imã, enquanto a extremidade oposta é chamada de polo sul.



Foco no conteúdo


Campo magnético terrestre

Quando um imã se orienta ao ser suspenso pelo seu centro de gravidade, isso indica a presença de um campo magnético terrestre. Ao observarmos que o polo norte do imã aponta aproximadamente para o norte geográfico e o polo sul, para o sul geográfico, podemos considerar a Terra como um imã de grande escala. Nesse caso, a Terra possui um polo sul magnético próximo ao norte geográfico e um polo norte magnético próximo ao sul geográfico.



(Cesgranrio - RJ) A bússola representada na figura abaixo repousa sobre sua mesa de trabalho. O retângulo tracejado representa a posição em que você vai colocar um ímã, com os polos respectivos nas posições indicadas. Em presença do ímã, a agulha da bússola permanecerá como em:

Na prática Correção

A bússola possui uma agulha que é magnetizada, ou seja, possui um polo norte magnético e um polo sul magnético. O polo norte magnético da agulha sempre aponta para o norte geográfico (sul magnético). Quando a parte do ímã que contém o polo norte é colocada em contato com a agulha da bússola, a metade sul da agulha será atraída. Portanto, a alternativa correta para essa questão é a **alternativa b.**

O que aprendemos hoje?

- Analisamos algumas características do vetor de indução magnética;
- Compreendemos a inseparabilidade dos polos magnéticos de um ímã;
- Aprendemos a construir uma bússola.

Referências

Slides 3 a 13 – HELOU, G. N. **Tópicos de Física**, Vol. 3, 16^a ed. São Paulo: Editora Saraiva , 2001.

Slides 3 a 13 – PIETROCOLA, M.; POGIBIN, A.; ANDRADE, R.; ROMERO, T. **Física em contextos**. Vol. 3, São Paulo: Editora do Brasil, 2016.

Slides 3 a 13 – MARTINI, G.; SPINELLI, W.; REIS, H. C.; SANT'ANNA, B. **Conexões com a Física**. Vol. 3, 3ª ed., São Paulo: Moderna, 2016.

Lista de imagens e vídeos

Slide 11 -

https://www.gettyimages.com.br/detail/ilustra%C3%A7%C3%A3o/vector-illustration-of-magnetic-field-lines-ilustra%C3%A7%C3%A3o-royalty-free/1478426738?phrase=campo+magn%C3%A9tico+terrestre&adppopup=true

Slide 9 -

https://www.gettyimages.com.br/detail/ilustra%C3%A7%C3%A3o/ear the-magnetic-field-ilustra%C3%A7%C3%A3o-royalty-free/13143539 85?phrase=campo+magn%C3%A9tico+terrestre&adppopup=true

Material Digital

